References

1. McNeish, D., & Wolf, M. G. (2021). Dynamic fit index cutoffs for confirmatory factor analysis models. Psychological Methods. https://doi.org/10.1037/met0000425
2. McNeish, D., & Wolf, M. G. (2022). Dynamic fit index cutoffs for one-factor models. Behavior Research Methods.
3. Wolf, M. G., & McNeish, D. (2020). Dynamic Model Fit. https://www.dynamicfit.app
4. Wolf, M. G., & McNeish, D. (2022). Dynamic: DFI cutoffs for latent variable models. https://github.com/melissagwolf/dynamic
5. McNeish, D. (2020). Should we use F-tests for model fit instead of chi-square in overidentified structural equation models? Organizational Research Methods, 23(3), 487–510. https://doi.org/10.1177/1094428118809495
6. Hayduk, L., Cummings, G., Boadu, K., Pazderka-Robinson, H., & Boulianne, S. (2007). Testing! Testing! One, two, three – Testing the theory in structural equation models! Personality and Individual Differences, 42(5), 841–850. https://doi.org/10.1016/j.paid.2006.10.001
7. Brown, T. A. (2015). Confirmatory Factor Analysis for Applied Research (2nd ed.). The Guilford Press.
8. Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling (3rd ed.). The Guilford Press.
9. Browne, M. W., & Cudeck, R. (1992). Alternative Ways of Assessing Model Fit. Sociological Methods & Research, 21(2). https://journals.sagepub.com/doi/10.1177/0049124192021002005
10. Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351–362. https://doi.org/10.1037/0033-2909.112.2.351
11. McNeish, D., An, J., & Hancock, G. R. (2018). The Thorny Relation Between Measurement Quality and Fit Index Cutoffs in Latent Variable Models. Journal of Personality Assessment, 100(1), 43–52. https://doi.org/10.1080/00223891.2017.1281286
12. Bonifay, W., & Cai, L. (2017). On the Complexity of Item Response Theory Models. Multivariate Behavioral Research, 52(4). https://doi.org/10.1080/00273171.2017.1309262
13. Bonifay, W., Lane, S. P., & Reise, S. P. (2017). Three Concerns With Applying a Bifactor Model as a Structure of Psychopathology. Clinical Psychological Science, 5(1), 184–186. https://doi.org/10.1177/2167702616657069
14. Preacher, K. J. (2006). Quantifying Parsimony in Structural Equation Modeling. Multivariate Behavioral Research, 41(3), 227–259. https://doi.org/10.1207/s15327906mbr4103_1
15. Hayduk, L. (2014). Seeing Perfectly Fitting Factor Models That Are Causally Misspecified: Understanding That Close-Fitting Models Can Be Worse. Educational and Psychological Measurement, 74(6), 905–926. https://doi.org/10.1177/0013164414527449
16. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
17. Hancock, G. R., & Mueller, R. O. (2011). The Reliability Paradox in Assessing Structural Relations Within Covariance Structure Models. Educational and Psychological Measurement, 71(2), 306–324. https://doi.org/10.1177/0013164410384856
18. Heene, M., Hilbert, S., Draxler, C., Ziegler, M., & Bühner, M. (2011). Masking misfit in confirmatory factor analysis by increasing unique variances: A cautionary note on the usefulness of cutoff values of fit indices. Psychological Methods, 16(3), 319–336. https://doi.org/10.1037/a0024917
19. Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling: A Multidisciplinary Journal, 11(3), 320–341. https://doi.org/10.1207/s15328007sem1103_2
20. Saris, W. E., Satorra, A., & Veld, W. M. van der. (2009). Testing Structural Equation Models or Detection of Misspecifications? Structural Equation Modeling: A Multidisciplinary Journal, 16(4), 561–582. https://doi.org/10.1080/10705510903203433
21. Millsap, R. E. (2007). Structural equation modeling made difficult. Personality and Individual Differences, 42(5), 875–881. https://doi.org/10.1016/j.paid.2006.09.021
22. Pornprasertmanit, S., Wu, W., & Little, T. D. (2013). A Monte Carlo Approach for Nested Model Comparisons in Structural Equation Modeling. In R. E. Millsap, L. A. van der Ark, D. M. Bolt, & C. M. Woods (Eds.), New Developments in Quantitative Psychology (pp. 187–197). Springer. https://doi.org/10.1007/978-1-4614-9348-8_12
23. American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (2014). Standards for Educational and Psychological Testing. American Educational Research Association.
24. Shi, D., & Maydeu-Olivares, A. (2020). The effect of estimation methods on SEM fit indices. Educational and Psychological Measurement, 80(3), 421–445. https://doi.org/10.1177/0013164419885164
25. Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. Psychological Assessment, 4(1), 26–42. https://doi.org/10.1037/1040-3590.4.1.26